All problems are NON CALCULATOR unless otherwise indicated.

1. The area of the region enclosed by the polar curve $r = 2\sin(2\theta)$ for $0 \le \theta \le \frac{\pi}{2}$ is

- A) 0
- B) $\frac{1}{2}$
- C) 1
- D) $\frac{\pi}{2}$ E) $\frac{\pi}{4}$

2. Which of the following gives the area of the region enclosed by the loop of the graph of the polar curve $r = 4\cos(3\theta)$ shown in the figure above?

A)
$$16\int_{-\pi/3}^{\pi/3} \cos(3\theta) d\theta$$

D)
$$16 \int_{-\pi/6}^{\pi/6} \cos^2(3\theta) d\theta$$

B)
$$8 \int_{-\pi/6}^{\pi/6} \cos(3\theta) d\theta$$

E)
$$8\int_{-\pi/6}^{\pi/6} \cos^2(3\theta) d\theta$$

C)
$$8\int_{-\pi/3}^{\pi/3} \cos^2(3\theta) d\theta$$

3. Which of the following is equal to the area of the region inside the polar curve $r = 2\cos\theta$ and outside the polar curve $r = \cos \theta$?

A)
$$3\int_0^{\frac{\pi}{2}}\cos^2\theta \,d\theta$$

B)
$$3\int_0^{\pi} \cos^2 \theta \, d\theta$$

C)
$$\frac{3}{2} \int_{0}^{\frac{\pi}{2}} \cos^2 \theta \, d\theta$$

D)
$$3\int_0^{\frac{\pi}{2}}\cos\theta\,d\theta$$

E)
$$3\int_0^{\pi}\cos\theta\,d\theta$$

4. The area of the region inside the polar curve $r = 4\sin\theta$ and outside the polar curve r = 2 is given

A)
$$\frac{1}{2}\int_0^{\pi} \left(4\sin\theta - 2\right)^2 d\theta$$

D)
$$\frac{1}{2} \int_{\pi/6}^{5\pi/6} (16\sin^2\theta - 4) d\theta$$

B)
$$\frac{1}{2} \int_{\frac{\pi}{4}}^{3\pi/4} (4\sin\theta - 2)^2 d\theta$$

E)
$$\frac{1}{2}\int_0^{\pi} \left(16\sin^2\theta - 4\right)d\theta$$

C)
$$\frac{1}{2} \int_{\pi/6}^{5\pi/6} (4\sin\theta - 2)^2 d\theta$$

5. Which of the following expressions gives the total area enclosed by the polar curve $r = \sin^2 \theta$ shown in the figure to the right?

(B)
$$\int_0^{\pi} \sin^2 \theta d\theta$$

(C)
$$\frac{1}{2} \int_0^{\pi} \sin^4 \theta d\theta$$

(D)
$$\int_0^{\pi} \sin^4 \theta d\theta$$

(E)
$$2\int_0^{\pi} \sin^4\theta d\theta$$

- 6. (1984 BC5) Consider the curves $r = 3\cos\theta$ and $r = 1 + \cos\theta$.
 - (a) Sketch the curves on a set of *x* and *y*-axes.
 - (b) Find the area of the region inside the curve $r = 3\cos\theta$ and outside the curve $r = 1 + \cos\theta$ by setting up and evaluating a definite integral. Your work must include an antiderivative.
- 7. (1990 BC4) Let *R* be the region inside the graph of the polar curve r = 2 and outside the graph of the polar curve $r = 2(1 \sin \theta)$.
 - (a) Sketch the two polar curves on a set of x and y axes and shade the region R.
 - (b) Find the area of R.
- 8. (1993 BC4) Consider the polar curve $r = 2\sin(3\theta)$ for $0 \le \theta \le \pi$.
 - (a) Sketch the curve on a set of *x* and *y*-axes.
 - (b) Find the area of the region inside the curve.
 - (c) Find the slope of the curve at the point where $\theta = \frac{\pi}{4}$.

- 9. (2003B BC2) The figure shows the graphs of the circles $x^2 + y^2 = 2$ and $(x-1)^2 + y^2 = 1$. The graphs intersect at the points (1, 1) and (1, -1). Let *R* be the shaded region in the first quadrant bounded by the two circles and the x axis.
 - (a) Set up an expression involving one or more integrals with respect to *x* that represents the area of *R*.
 - (b) Set up an expression involving one or more integrals with respect to y that represents the area of R.
 - (c) The polar equations of the circles are $r = \sqrt{2}$ and $r = 2\cos\theta$, respectively. Set up an expression involving one or more integrals with respect to the polar angle θ that represents the area of R.

- 10. (2005 BC2) The curve above is drawn in the xy plane and is described by the equation in polar coordinates $r = \theta + \sin(2\theta)$ for $0 \le \theta \le \pi$, where r is measured in meters and θ is measured in radians. The derivative of r with respect to θ is given by $\frac{dr}{d\theta} = 1 + 2\cos(2\theta)$.
 - (a) Find the area bounded by the curve and the x axis.
 - (b) Find the angle θ that corresponds to the point on the curve with x coordinate –2.
 - (c) For $\frac{\pi}{3} \le \theta \le \frac{2\pi}{3}$, $\frac{dr}{d\theta}$ is negative. What does this fact say about r? What does this fact say about the curve?
 - (d) Find the value of θ in the interval $0 \le \theta \le \frac{\pi}{2}$ that corresponds to the point on the curve in the first quadrant with greatest distance from the origin. Justify your answer.

11. (2007 BC3) The graphs of the polar curves r=2 and $r=3+2\cos\theta$ are shown in the figure below. The curves intersect when $\theta=\frac{2\pi}{3}$ and $\theta=\frac{4\pi}{3}$.

- (a) Let R be the region that is inside both graphs. Find the area of R.
- (b) A particle moving with nonzero velocity along the polar curve given by $r=3+2\cos\theta$ has position (x(t),y(t)) at time t, with $\theta=0$ when t=0. The particle moves along the curve so that $\frac{dr}{dt}=\frac{dr}{d\theta}$. Find the value of $\frac{dr}{dt}$ at $\theta=\frac{\pi}{3}$ and interpret your answer in terms of the motion of the particle.
- (c) For the particle described in part (b), $\frac{dy}{dt} = \frac{dy}{d\theta}$. Find the value of $\frac{dy}{dt}$ at $\theta = \frac{\pi}{3}$ and interpret your answer in terms of the motion of the particle.

12. (2009B BC4) The graph of the polar curve $r = 1 - 2\cos\theta$ for $0 \le \theta \le \pi$ is shown below. Let S be the shaded region in the third quadrant bounded by the curve and the x – axis.

- (a) Write an integral expression for the area of *S*.
- (b) Write expression for $\frac{dx}{d\theta}$ and $\frac{dy}{d\theta}$ in terms of θ .
- (c) Write an equation in terms of x and y for the line tangent to the graph of the polar curve at the point where $\theta = \frac{\pi}{2}$. Show the computations that lead to your answer.
- 13. (2011B BC2) The polar curve r is given by $r(\theta) = 3\theta + \sin \theta$, where $0 \le \theta \le 2\pi$.
 - (a) Find the area in the second quadrant enclosed by the coordinate axes and the graph of r.
 - (b) For $\frac{\pi}{2} \le \theta \le \pi$, there is one point *P* on the polar curve *r* with *x*-coordinate -3. Find the angle θ that corresponds to point *P*. Find the *y*-coordinate of point *P*. Show the work that leads to your answers.
 - (c) A particle is traveling along the polar curve r so that its position at time t is $\left(x(t),y(t)\right)$ and such that $\frac{d\theta}{dt}=2$. Find $\frac{dy}{dt}$ at the instant that $\theta=\frac{2\pi}{3}$, and interpret the meaning of your answer in the context of the problem.

14. (2013 BC2) The graphs of the polar curves r = 3 and $r = 4 - 2\sin\theta$ are shown in the figure below.

The curves intersect when $\theta = \frac{\pi}{6}$ and $\theta = \frac{5\pi}{6}$.

- (a) Let *S* be the shaded region that is inside the graph of r = 3 and also inside the graph of $r = 4 2\sin\theta$. Find the area of *S*.
- (b) A particle moves along the polar curve $r = 4 2\sin\theta$ so that at time t seconds, $\theta = t^2$. Find the time t in the interval $1 \le t \le 2$ for which the x-coordinate of the particle's position is -1.
- (c) For the particle described in part (b), find the position vector in terms of t. Find the velocity at time t = 1.5.

15. (2014 BC2) The graphs of the polar curves r=3 and $r=3-2\sin(2\theta)$ are shown in the figure below for $0 \le \theta \le \pi$.

- (a) Let R be the shaded region that is inside the graph of r=3 and inside the graph of $r=3-2\sin(2\theta)$. Find the area of R.
- (b) For the curve $r = 3 2\sin(2\theta)$, find the value of $\frac{dx}{d\theta}$ at $\theta = \frac{\pi}{6}$.
- (c) The distance between the two curves changes for $0 < \theta < \frac{\pi}{2}$. Find the rate at which the distance between the two curves is changing with respect to θ when $\theta = \frac{\pi}{3}$.
- (d) A particle is moving along the curve $r = 3 2\sin(2\theta)$ so that $\frac{d\theta}{dt} = 3$ for all times $t \ge 0$. Find the value of $\frac{dr}{dt}$ at $\theta = \frac{\pi}{6}$.

- 16. (2017 BC2) The figure shows the polar curves $r = f(\theta) = 1 + \sin\theta\cos(2\theta)$ and $r = g(\theta) = 2\cos\theta$ for $0 \le \theta \le \frac{\pi}{2}$. Let R be the region in the first quadrant bounded by the curve $r = f(\theta)$ and the x axis. Let S be the region in the first quadrant bounded by the curve $r = f(\theta)$, the curve $r = g(\theta)$, and the x axis.
 - (a) Find the area of *R*.
 - (b) The ray $\theta = k$, where $0 < k < \frac{\pi}{2}$, divides S into two regions of equal area. Write, but do not solve, and equation involving one or more integrals whose solution gives the value of k.
 - (c) For each θ , $0 \le \theta \le \frac{\pi}{2}$, let $w(\theta)$ be the distance between the points with polar coordinates $(f(\theta), \theta)$ and $(g(\theta), \theta)$. Write an expression for $w(\theta)$. Find w_A , the average value of $w(\theta)$ over the interval $0 \le \theta \le \frac{\pi}{2}$.
 - (d) Using the information from part (c), find the value of θ for which $w(\theta) = w_A$. Is the function $w(\theta)$ increasing or decreasing at that value of θ ? Give a reason for your answer.

Answers

MISWCIS					
1.	D	1985	BC	#24	41%
2.	E	1988	BC	#23	55%
3.	Α	1997	BC	#21	22%
4.	D	1998	BC	#19	37%
5.	D	2008	BC	#26	38%