AP Calculus BC
 Chapter 10 Part 2 - AP Exam Problems

All problems are NON CALCULATOR unless otherwise indicated.

1. The area of the region enclosed by the polar curve $r=2 \sin (2 \theta)$ for $0 \leq \theta \leq \frac{\pi}{2}$ is
A) 0
B) $\frac{1}{2}$
C) 1
D) $\frac{\pi}{2}$
E) $\frac{\pi}{4}$

2. Which of the following gives the area of the region enclosed by the loop of the graph of the polar curve $r=4 \cos (3 \theta)$ shown in the figure above?
A) $16 \int_{-\pi / 3}^{\pi / 3} \cos (3 \theta) d \theta$
B) $8 \int_{-\pi / 6}^{\pi / 6} \cos (3 \theta) d \theta$
C) $8 \int_{-\pi / 3}^{\pi / 3} \cos ^{2}(3 \theta) d \theta$
D) $16 \int_{-\pi / 6}^{\pi / 6} \cos ^{2}(3 \theta) d \theta$
E) $8 \int_{-\pi / 6}^{\pi / 6} \cos ^{2}(3 \theta) d \theta$
3. Which of the following is equal to the area of the region inside the polar curve $r=2 \cos \theta$ and outside the polar curve $r=\cos \theta$?
A) $3 \int_{0}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta$
B) $3 \int_{0}^{\pi} \cos ^{2} \theta d \theta$
C) $\frac{3}{2} \int_{0}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta$
D) $3 \int_{0}^{\frac{\pi}{2}} \cos \theta d \theta$
E) $3 \int_{0}^{\pi} \cos \theta d \theta$
4. The area of the region inside the polar curve $r=4 \sin \theta$ and outside the polar curve $r=2$ is given by
A) $\frac{1}{2} \int_{0}^{\pi}(4 \sin \theta-2)^{2} d \theta$
B) $\frac{1}{2} \int_{\pi / 4}^{3 \pi / 4}(4 \sin \theta-2)^{2} d \theta$
C) $\frac{1}{2} \int_{\pi / 6}^{5 \pi / 6}(4 \sin \theta-2)^{2} d \theta$
D) $\frac{1}{2} \int_{\pi / 6}^{5 \pi / 6}\left(16 \sin ^{2} \theta-4\right) d \theta$
E) $\frac{1}{2} \int_{0}^{\pi}\left(16 \sin ^{2} \theta-4\right) d \theta$

AP Calculus BC
 Chapter 10 Part 2 - AP Exam Problems

5. Which of the following expressions gives the total area enclosed by the polar curve $r=\sin ^{2} \theta$ shown in the figure to the right?
(A) $\frac{1}{2} \int_{0}^{\pi} \sin ^{2} \theta d \theta$
(B) $\int_{0}^{\pi} \sin ^{2} \theta d \theta$
(C) $\frac{1}{2} \int_{0}^{\pi} \sin ^{4} \theta d \theta$
(D) $\int_{0}^{\pi} \sin ^{4} \theta d \theta$
(E) $2 \int_{0}^{\pi} \sin ^{4} \theta d \theta$

6. (1984 BC5) Consider the curves $r=3 \cos \theta$ and $r=1+\cos \theta$.
(a) Sketch the curves on a set of x and y-axes.
(b) Find the area of the region inside the curve $r=3 \cos \theta$ and outside the curve $r=1+\cos \theta$ by setting up and evaluating a definite integral. Your work must include an antiderivative.
7. (1990 BC4) Let R be the region inside the graph of the polar curve $r=2$ and outside the graph of the polar curve $r=2(1-\sin \theta)$.
(a) Sketch the two polar curves on a set of x and y axes and shade the region R.
(b) Find the area of R.
8. (1993 BC4) Consider the polar curve $r=2 \sin (3 \theta)$ for $0 \leq \theta \leq \pi$.
(a) Sketch the curve on a set of x and y-axes.
(b) Find the area of the region inside the curve.
(c) Find the slope of the curve at the point where $\theta=\frac{\pi}{4}$.
\qquad

AP Calculus BC
 Chapter 10 Part 2 - AP Exam Problems

9. (2003B BC2) The figure shows the graphs of the circles $x^{2}+y^{2}=2$ and $(x-1)^{2}+y^{2}=1$. The graphs intersect at the points $(1,1)$ and $(1,-1)$. Let R be the shaded region in the first quadrant bounded by the two circles and the x-axis.
(a) Set up an expression involving one or more integrals with respect to x that represents the area of R.
(b) Set up an expression involving one or more integrals with respect to y that represents the area of R.
(c) The polar equations of the circles are $r=\sqrt{2}$ and $r=2 \cos \theta$, respectively. Set up an expression involving one or more integrals with respect to the polar angle θ that represents the area of R.

AP Calculus BC
 Chapter 10 Part 2 - AP Exam Problems

10. (2005 BC2) The curve above is drawn in the $x y$ - plane and is described by the equation in polar coordinates $r=\theta+\sin (2 \theta)$ for $0 \leq \theta \leq \pi$, where r is measured in meters and θ is measured in radians. The derivative of r with respect to θ is given by $\frac{d r}{d \theta}=1+2 \cos (2 \theta)$.
(a) Find the area bounded by the curve and the x - axis.
(b) Find the angle θ that corresponds to the point on the curve with x - coordinate -2 .
(c) For $\frac{\pi}{3} \leq \theta \leq \frac{2 \pi}{3}, \frac{d r}{d \theta}$ is negative. What does this fact say about r ? What does this fact say about the curve?
(d) Find the value of θ in the interval $0 \leq \theta \leq \frac{\pi}{2}$ that corresponds to the point on the curve in the first quadrant with greatest distance from the origin. Justify your answer.

Chapter 10 Part 2 - AP Exam Problems

11. (2007 BC3) The graphs of the polar curves $r=2$ and $r=3+2 \cos \theta$ are shown in the figure below. The curves intersect when $\theta=\frac{2 \pi}{3}$ and $\theta=\frac{4 \pi}{3}$.

(a) Let R be the region that is inside both graphs. Find the area of R.
(b) A particle moving with nonzero velocity along the polar curve given by $r=3+2 \cos \theta$ has position $(x(t), y(t))$ at time t, with $\theta=0$ when $t=0$. The particle moves along the curve so that $\frac{d r}{d t}=\frac{d r}{d \theta}$. Find the value of $\frac{d r}{d t}$ at $\theta=\frac{\pi}{3}$ and interpret your answer in terms of the motion of the particle.
(c) For the particle described in part (b), $\frac{d y}{d t}=\frac{d y}{d \theta}$. Find the value of $\frac{d y}{d t}$ at $\theta=\frac{\pi}{3}$ and interpret your answer in terms of the motion of the particle.

AP Calculus BC
 Chapter 10 Part 2 - AP Exam Problems

12. (2009B BC4) The graph of the polar curve $r=1-2 \cos \theta$ for $0 \leq \theta \leq \pi$ is shown below. Let S be the shaded region in the third quadrant bounded by the curve and the $\mathrm{x}-$ axis.

(a) Write an integral expression for the area of S.
(b) Write expression for $\frac{d x}{d \theta}$ and $\frac{d y}{d \theta}$ in terms of θ.
(c) Write an equation in terms of x and y for the line tangent to the graph of the polar curve at the point where $\theta=\frac{\pi}{2}$. Show the computations that lead to your answer.
13. (2011B BC2) The polar curve r is given by $r(\theta)=3 \theta+\sin \theta$, where $0 \leq \theta \leq 2 \pi$.
(a) Find the area in the second quadrant enclosed by the coordinate axes and the graph of r.
(b) For $\frac{\pi}{2} \leq \theta \leq \pi$, there is one point P on the polar curve r with x-coordinate -3 . Find the angle θ that corresponds to point P. Find the y-coordinate of point P. Show the work that leads to your answers.
(c) A particle is traveling along the polar curve r so that its position at time t is $(x(t), y(t))$ and such that $\frac{d \theta}{d t}=2$. Find $\frac{d y}{d t}$ at the instant that $\theta=\frac{2 \pi}{3}$, and interpret the meaning of your answer in the context of the problem.

AP Calculus BC
 Chapter 10 Part 2 - AP Exam Problems

14. (2013 BC2) The graphs of the polar curves $r=3$ and $r=4-2 \sin \theta$ are shown in the figure below. The curves intersect when $\theta=\frac{\pi}{6}$ and $\theta=\frac{5 \pi}{6}$.

(a) Let S be the shaded region that is inside the graph of $r=3$ and also inside the graph of $r=4-2 \sin \theta$. Find the area of S.
(b) A particle moves along the polar curve $r=4-2 \sin \theta$ so that at time t seconds, $\theta=t^{2}$. Find the time t in the interval $1 \leq t \leq 2$ for which the x-coordinate of the particle's position is -1 .
(c) For the particle described in part (b), find the position vector in terms of t. Find the velocity at time $\mathrm{t}=1.5$.

AP Calculus BC
 Chapter 10 Part 2 - AP Exam Problems

15. (2014 BC2) The graphs of the polar curves $r=3$ and $r=3-2 \sin (2 \theta)$ are shown in the figure below for $0 \leq \theta \leq \pi$.

(a) Let R be the shaded region that is inside the graph of $r=3$ and inside the graph of $r=3-2 \sin (2 \theta)$. Find the area of R.
(b) For the curve $r=3-2 \sin (2 \theta)$, find the value of $\frac{d x}{d \theta}$ at $\theta=\frac{\pi}{6}$.
(c) The distance between the two curves changes for $0<\theta<\frac{\pi}{2}$. Find the rate at which the distance between the two curves is changing with respect to θ when $\theta=\frac{\pi}{3}$.
(d) A particle is moving along the curve $r=3-2 \sin (2 \theta)$ so that $\frac{d \theta}{d t}=3$ for all times $t \geq 0$. Find the value of $\frac{d r}{d t}$ at $\theta=\frac{\pi}{6}$.

AP Calculus BC
 Chapter 10 Part 2 - AP Exam Problems

16. (2017 BC2) The figure shows the polar curves $r=f(\theta)=1+\sin \theta \cos (2 \theta)$ and $r=g(\theta)=2 \cos \theta$ for $0 \leq \theta \leq \frac{\pi}{2}$. Let R be the region in the first quadrant bounded by the curve $r=f(\theta)$ and the $x-$ axis. Let S be the region in the first quadrant bounded by the curve $r=f(\theta)$, the curve $r=g(\theta)$, and the x-axis.
(a) Find the area of R.
(b) The ray $\theta=k$, where $0<k<\frac{\pi}{2}$, divides S into two regions of equal area. Write, but do not solve, and equation involving one or more integrals whose solution gives the value of k.
(c) For each $\theta, 0 \leq \theta \leq \frac{\pi}{2}$, let $w(\theta)$ be the distance between the points with polar coordinates $(f(\theta), \theta)$ and $(g(\theta), \theta)$. Write an expression for $w(\theta)$. Find w_{A}, the average value of $w(\theta)$ over the interval $0 \leq \theta \leq \frac{\pi}{2}$.
(d) Using the information from part (c), find the value of θ for which $w(\theta)=w_{A}$. Is the function $w(\theta)$ increasing or decreasing at that value of θ ? Give a reason for your answer.

Answers

1.	D	1985	BC	$\# 24$	41%
2.	E	1988	BC	$\# 23$	55%
3.	A	1997	BC	$\# 21$	22%
4.	D	1998	BC	$\# 19$	37%
5.	D	2008	BC	$\# 26$	38%

